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KARL GERLACH

It can be shown that (S/N) is maximized when

w = s*. (4)

The matched receiver structure can be represented as seen in Fig. 2. Here x(n) is the received time-
sampled input sequence consisting of signal plus noise. The received input sequence is digitally
convolved with the conjugated time-reversed sequence of the vector s, denoted by 9*, which results in
a matched output sequence y(n). Mathematically, this can be stated as

-

y(n) = s+Zx(n +k). (5)
k = 

MATCHED
xn) _ FILTER

Fig. 2 - Simplified digital matched filter

Many surveillance radars employ a periodic waveform as illustrated in Fig. 3. The waveform is
"on" for a given duty cycle and then turned "off' to receive the reflected echoes. The "on" por-
tion of the waveform is subdivided into N cells where the th cell has the value s . Each cell is 
seconds long, where r is proportional to the range resolution cell. In fact, it can be shown [3J that if
fi is the bandwidth of the radar waveform, then r 1/. Let there be M range resolution cells in
the pulse repetition interval (PMJ). It can be shown that PRI = MT.

M RANGE CELLS PR = Mr

S.: 2 S3 Skit4{ aSI r2 S3

Fig. 3 - Periodic radar waveform

The digitally matched receiver of this periodic waveform can be implemented by using the linear
convolution operation as given by Eq. (5) or it can be implemented by using fast convolution tech-
niques t4]. In this report, we introduce a processing method (based on circular convolutional tech-
niques) that is numerically more efficient than the fast convolution techniques when the duty cycle is
not small. In fact, for 50% duty cycle waveforms, the technique uses half as many complex multipli-
cation operations (CMOPs) as do the fast convolution techniques. The circular convolution algorithm
is presented in Section II and is compared with a fast convolution technique in Section III.

Note that if the radar waveform pulse train is a long-windowed periodic function, then the circu-
lar convolution technique is also applicable with some (S(N) losses occurring at the leading and trail-
ing edges of the received waveform.
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A NUMERICALLY EFFICIENT DIGITAL
MATCHED FILTER FOR PERIODIC AND

WINDOWED PERIODIC RADAR WAVEFORMS

I. INTRODUCTION

A network whose frequency response function maximizes the output peak signal-to-mean noise
power (SfN) ratio is called a matched filter. Almost all radar receivers are designed with the matched
filter criteria. If h t) is the impulse response function of the matched radar receiver, s(t) is the
transmitted radar waveform, and the noise interference is white and additive, then it can be shown
[1-3] that

(1)

where * denotes the complex conjugate operation.

A digital matched receiver design is based on the same principle of maximizing (S/N). We sam-
ple the transmitted radar waveform at equal time intervals T. Let s 1 s2, . . , SN be the values of the
sampled transmitted waveform where N is the number of sampled points as seen in Fig. 1. We set

(2)

where T denotes
w = (I, w2 , i.

the vector transpose
, WN)T such that

operation. The digital receiver applies a weighting vector

y = wrs. (3)

s(t)

Si S2 

Fig. I - Sampled radar waveform

Manuscript approved September 15, 1987.
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h(t) =s*(-t),

S � (SI, S2, - - - I SN)T I
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where ytn m = 1, 2, .. , M represent the compressed output for each range cell.

Let

(7)

(8)

SI

0

0S

Y = (YI, Y2, * *, YM)

S2 S3...

0 S2 ...

.5 ...

$3 4 -

S-I
SN -2

0

0

SN

SN- I

0

...a

... o

... o

...
..

(9)

We can then show that

y = S*x.

However S is a circular Toeplitz matrix [51 and can be written in the form

S = BAB*

where the Butler matrix

()

(11)

(12)B = (rt''(n-t); mn = 1,2,...,M,

2e
-I-M

rP = e 

the diagonal matrix

(13)A = ,; m =1,2,...,M,

and

= E s rt)k ; m = 1 2,... , M.
N( =o0

(14)

Hence y can be rewritten as

y = B*A*Bx. (15)

As a result, the matched filter implementation can be configured as shown in Fig. 5. Note that this
implementation is equivalent to a circular convolution j43.

4
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11. MATCHED FILTER IMPLEMENTATION

In this section, we present a matched filter implementation based on circular convolution tech-
niques. Consider the simplified digital receiver structure shown in Fig. 4. The return signal is x(t)
and is sampled each i- seconds. Each sample is successively stored in a shift register (SR) until M
samples are taken. We match the filter to those M samples. After matching, the SR is reloaded with
the next M samples of x(t), matched, and so on. Note that when this implementation scheme is
employed, in most cases we are matching the received data, x, x2, . . ., x across two PRIs. For
example, with no noise, x = m9 X2 = Sm+ , XNm+l = N' XNm+2 = 0, XNm+3 = 0, -

* X-m-3 = 0, XM-m-2 = S, XM-m. = S2, XM = Sm1, where m is related to referenced
time delay or compressed range cells.

XT STORA(x x3x
31E SHIFT REGISTER

. . .

MATCHED FILTER

OUTPUTS

V

Fig. 4 - Simplified digital receiver

We designate the compressed range cells as r, r2 , . . . rM. The
data contained in the SR for each range cell is

matched filter output for the

r, y l I SlX 1+S 2*X2+ .- . SNXN

r2 : Y2S SIX2 + S2X3 + S . . + SXN + I

r3 : Y3 = S X3 + S2X4 + + SXN +2

(6)

TM: YM S iXM + S2X+.. + SXN 1

3
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Doppler processing is also implementable in conjunction with using the circular convolver as a
matched filter or pulse compressor as illustrated in Fig. 8. Here, we have inserted a Doppler filter
bank before pulse compression (note that ideally the operations of Doppler filtering and pulse
compression can be reversed with no differences in the respective output channels). The Doppler
filter bank samples the input data stream xQ) every PRI, which we set equal to T. We make the fol-
lowing definitions. Let a = (a/ff, a f), . .. , a/iI)T be the K Doppler coefficients on the th
Doppler filter. Let L be the number of Doppler filters and be the Doppler phase shift over one
PRI of our desired signal. Thus the output s 4 of the Ith Doppler filter related to the nth subpulse of
the received desired signal is

s n =afs + f' se 't + a')se aeJ2 +. ±akl is.eJ(K -) (16)

= E af e-
A =G

where we have defined

K-1
few E a[ei (17)

k =0

to be the Doppler filter gain factor of the I th filter. Hence the output data stream of the desired sig-
nal through the th filter looks as is shown in Fig. 9. Note that the input data stream for the desired
signal is multiplied by the Doppler filter gain factor, which is range independent, and also that the
basic periodic structure is retained. Thus this signal can be matched filtered by using the circular
convolution procedure as if there were no Doppler processing present.

m. NUMERICAL EFFICIENCY COMPARISON

The total number of complex multiplications operations (CMOPs) per PR] to implement the cir-
cular convolution algorithm is tabulated below:

CMOPs
M-pt inverse FFT: .5M log2 M

X weighting : M

M-pt FFT : .5M log2 M
Total : M log2 2M

We compare this with the number of CMOPs per PR! if the standard matched receiver (Fig. 2) is
implemented.

In Fig. 2, x(m), in = 0, 1,..., are consecutive samples of xQ). This sequence is convolved
with the matched finite impulse response filter, which has coefficients s, .. . ,sN to form the matched
output sequence: y (0), y (1), . I lf standard convolution is employed to generate a single output

6



NRL REPORT 9055

/ 2

TIC
X. 11

Y1 Y' aM

Fig. 5 - New matched filter implementation

An efficient implementation of this multiple channel matched filter is accomplished by using M-

point fast Fourier transforms (FFTs) which is equivalent to multiplying by the B matrix; and by using

M-point inverse FFTs, which is equivalent to multiplying by B*. This implementation is shown in

Fig. 6. The input data structure is as illustrated in Fig. 7, for N = 8 and M = 16. Note that the

input data structure differs from that of the linear convolver in that the "matching" in most cases

actually occurs over two adjacent pulses. In the example seen in Fig. 7, three subpulses S6, S7 , S8 in

pulse I are inputted along with the five subpulses s1, s2, S3 , S4, S5 in pulse 2 into the matched filter
(circular convolver implementation).

M pt FFT

22 Xt MM

M Pt INVERSE FFT

I'I II2
Y1 Y2 YM

Fig. 6 -Efficient implementation of new matched filter

5

* 6 0
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i I I

I -B -J
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point, N CMOPs are necessary (see Eq. (5)). Thus to generate M outputs (or all the matched outputs
over a PRIO, MN CMOPs are needed.

If fast convolution techniques are employed, then we can show that to generate N outputs (over-
lap and add technique [4]), then 2N 10g2 4N CMOPs are needed (see tabulation below).

CMOPs
2N FFT of N-pt input : N log2 ZN

internal multiply by the DFT fsj: 2N

2N inverse FFT
To

: N log2 2N

: 2N log2 4N

Hence to generate M points,

- (2N log2 4N) = 2M log2 4NN
points are needed.

We list the number of CMOPs per PRI for each algorithm

(18)

Algorithm
New

Fast Convolve
Standard Convolve

CMOPs per PRI
M log2 2M

M og2 16N2
MN

Thus if 2M c 16N2 , then the circular convolutional matched filter is more efficient. For example, if
the duty cycle of the waveform is 50%, then M = 2. The new algorithm takes 2 log2 4N
CMOPs, and the fast convolve algorithm takes 4 log2 4N CMOPs. Hence the new algorithm
requires half as many CMOPs as the fast convolution algorithm. In fact, for d = I or 100% duty
cycle waveform, the number of CMUPs of the circular convolution algorithm is slightly less than half
of the fast convolution algorithm.

If we defe the duty cycle d to be the "on" time divided by the PRI, then d = NIM. Also,
if p is the pulse compression ratio, then p = N. If BPRI is the radar waveform bandwidth-PRI prod-
uct that is equal to the number of range cells per PRI, then

N =dM = dBPRI. (19)

Using these above definitions, we can show that

no. COMPs using fast linear convolution
no. CMOPs using circular convolution

4 + 2 log2 p

I + log2 BPRI

In Fig. 10, we plot the ratio expressed in Eq. (20) as a function of the number of range cells per PRI,
BPRI, and the pulse compression ratio p. Note that if the ratio given in Eq, (20) is greater than one,

8
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PULSE 1 PULSE 2

I M 16 SAMPLES INPUTTED INTO MATCHED
FILTER (CIRCULAR CONVOLVER)

Fig. 7 - Input data structure into the circular convolver

DOPPLER
FILTER BANK

a.

S~~~~~~~~

x(t) 0

aLl 9*

MATCHED
= S1 I, 2 , SN) FILTER

a, = (as'), aj" .. , &K-i1

Fig. 8 - Doppler processing and matched filtering

MULTIPLIED BY f 

S M = 16 SAMPLES INPUTTED INTO MATCHED
FILTER (CIRCULAR CONVOLVER)

Fig. 9 -Input data structure after Doppler processing
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100 1000 10000
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Fig. 12 - Pulse compression ratio
vs BPRI
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Fig. II - Duty cycle vs BPRI
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Fig. 10 - CMOP's ratio vs BPRI and p

then the circular convolution implementation is more numerically efficient than the fast linear convo-
lution. Also observe that the circular convolution implementation tends to be more efficient for larger

pulse compression ratios.

Using the above formulation, we can show that the circular convolution algorithm is more effi-
cient when

1 / > PRI
d > ok -,or p> . (21)

8A~BPRTl 8

This is illustrated and plotted in Figs. 11 and 12. The region above the straight line indicates
values of duty cycle (or pulse compression ratio) and BPRI where the circular convolution implemen-
tation is more numerically efficient than the fast linear convolution.

Finally, we note that there is a settling time of one extra PR1 associated with using the circular

convolutional matched filter as compared to using linear convolution. This is because the circular

convolutional matched filter in most cases uses data from adjacent PRI. Hence, initially upon recep-

tion for a target at a given range, there is target data in one PRI but not in the preceding PRI which

leads to an incomplete circular match. Furthermore, for finite length pulse trains, the last PRI will

not be property matched because the succeeding PR1 has no target data. Also note that the absolute
settling time of any matched receiver depends on the PRI (the possibility of second, third, etc. time
around returns) and whether there is clutter processing.

9


